### Chapter 3

#### **Forces and Fluids**

# <u>3 – 1 Pressure</u>

- Pressure the amount of force exerted per unit of area.
- Measured in units of Pascals (Pa) or kilopascals (kPa).
- One pascal is equal to a force of 1 N applied over an area of 1 m<sup>2</sup>, or 1 Pa = 1 N/m<sup>2</sup> Force
- Pressure =  $\frac{F_{\text{Area}}}{A_{\text{Area}}}$ P =  $\frac{F}{A}$

#### Fluids

- Fluid any substance that has no definite shape and has the ability to flow.
  - Liquids
  - Gases

#### Air Pressure

- The atmosphere exerts pressure on our bodies.
- As you climb a mountain, there is less air pushing down on you, therefore there is less air pressure.



#### Pressure is exerted on an object perpendicular to its surface.



#### Barometer

#### An instrument called a barometer is used to measure atmospheric pressure.



#### 3 – 2 Why do objects float ?



#### <u>Buoyant Force</u> – the ability of a fluid to exert an upward force on an object immersed in it.





# Gravity

If there was a post in the middle of the esert someone would hit it...... (did you notice the nam Blue And FOrce

#### If the buoyant force is greater than the force of gravity, then it will rise.

## Gravity

# Buoyant Force

#### If buoyant force is less than the force of gravity, then it will sink.

# Gravity

# Buoyant Force

#### **Buoyant Force and Shape**

## The amount of Buoyant Force is determined by : SHAPE of the object

### Archimedes' Principle

Archimedes' Principle – the buoyant force on an object in a fluid is equal to the weight of the fluid displaced by the object.

### 3 – 3 Doing Work with Fluids

#### Pascal's Principle

Pascal's Principle – the pressure applied to a fluid is transmitted unchanged throughout the fluid.





### Pressure L. = Pressure R. Force/Area = Force/Area • $100 \text{ N}/10 \text{ cm}^2 = \text{F} / 100 \text{ cm}^2$ • 10 Pa = F / 100 cm<sup>2</sup> 1000 N = Force

### Bernoulli's Principle

Bernoulli's Principle – as the velocity of a fluid increases, the pressure exerted by the fluid decreases.

#### The air on top will have to move faster to meet the air on the bottom

### Venturi Effect

Venturi Effect – reduction in fluid pressure resulting from the speed increase as fluids are forced to flow faster through narrow spaces.

#### Squeezing a hose makes it flow faster and squirt further.

Wind in cities blows faster between the tall buildings.